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Abstract--Conventional analyses of frameworks are usually carried out without considering the
effect of panel zone deformation on frame behavior. As a result, center-to-center distances rather
than clear spans are used for the lengths of the members. As is evident from experimental studies,
the effect ofpanel zone deformation has a pronounced influence on framc behavior. In particular, the
strength and drift of the frame will be affected ifpanel zone deformation is taken into consideration in
the analysis. In this paper, various deformation modes of the panel zone are identified. A simple
model which can be used to represent all these modes is then presented. The validity of this model
is established by comparison with experiments on joint subassemblages. Finally, a two-bar frame
with different behavioral joint models is analyzed numerically to demonstrate the importance of
using realistic models in frame analysis.

INTRODUCTION

In a steel frame, if the beam is framed into the flange of the column, there exists a region
called the panel zone which is composed of the web and flanges of the column (Fig. 1). The
behavior of this panel zone has a significant influence on the behavior of the frame. Figure
2 shows a possible system of forces that acts on the joint panel of an interior beam-to­
column connection. Under the action of these forces, the joint panel will deform. The
various deformation modes are shown in Fig. 3. In addition to causing deformation, these
forces may cause premature yielding of the panel zone resulting in a reduction in strength
and stiffness of the frame.

Numerous tests[l, 2, 4-7] have been performed in the past decade to investigate the
load-deformation behavior of the joint panel using connection subassemblages. Particular
attention was given to the shear capacity of the panel zone and the effect of panel zone
shear deformation on the strength and stiffness of the subassemblages. The significant
features observed in these tests arc:

1. There are two distinct stiffnesses in the joint shear force-determination response of
the panel. An elastic stiffness, followed by a smaller, almost constant stiffness for a long
range of deformation (Fig. 4).

2. Large ductility of the joint panel is observed before failure.
3. Failure is usually caused by fracture of the welds or beam flange on the face of the

column flange.

The existence ofa second or post yield stiffness in the shear force-deformation response
is attributed to the following:

1. The resistance of the boundary elements such as the column flanges and stiffeners
of the joint panel.

2. The onset of strain-hardening of the web of the joint panel before complete yielding
of the boundary elements.

3. The restraint from the adjoining beams and columns.
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Fig. 1. Panel zone.

Based on these observations, a finite element model of the panel zone is presented.
This model is capable of representing the various modes of defonnation depicted in Fig. 3.
In addition, yielding and strain-hardening of the web panel are considered. The validity of
this model will be demonstrated by comparison with experiments.

BASIC ASSUMPTIONS

The assumptions used for the model are:
I. An elastic-perfectly plastic strain-hardening stress-strain behavior of the web panel

is assumed (Fig. 5).
2. Although large rigid body rotation of the joint panel is allowed, the defonnation or

distortion of the point panel remains small.
3. No local buckling or lateral torsional buckling of the panel is allowed. In other

words, only strength limit state will be considered for the joint panel in the model.
4. Yielding of the web of the joint panel will occur as the state of stress reaches the

yield surface described by the Von Mises or J2 theory.
5. Isotropic hardening rule is used to describe the subsequent yield or loading surfaces.
6. Fracture of the material is not considered.
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Fig. 2. Forces acting on a panel zone.
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Finite element model ofpanel zone
The finite element model of the panel zone is shown in Fig. 6. It consists of three

elements: one web element and two flange elements. The local (e, ,,) coordinate systems
and degrees of freedom of these elements are shown in Fig. 6.

Web panel. Refer to Fig. 6(b), the assumed displacement field for this element is

(
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where

h = height of the panel zone.

Using the 12 boundary conditions at the four nodes of the element, the nodal degrees
of freedom (u, v and Os) can be related to the generalized degrees of freedoms (a and fJs)
by

I
UI al

U2 a2
U3 a3
U4 a4
VJ a5
V2 =C1C2

a6
(2)

V3 a7
V4 a8
01 fJI
O2 fJ2
03 fJ3
04 fJ4



where

Frame analysis with panel zone deformation 1603

(3a)

-2
h

-2
h

-2
h

-2
h

1 -1 -1 1 1 -1 -1 1 0 0 0 0
1 -1 1 -1 1 -1 1 -1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 -1 -1 1 1 -1 -1 0 0 0 0
0 0 0 0 0 0 0 0 1 -1 -1 1

C2 =
0 0 0 0 0 0 0 0 1 -1 1 -1 (3b)
0 0 0 0 0 0 0 0 1 1 1 I
0 0 0 0 0 0 0 0 1 1 -J -I
0 0 1 -1 -2 2 3 -3 0 0 0 0
0 0 1 -1 2 -2 3 -3 0 0 0 0
0 0 1 1 2 2 3 3 0 0 0 0
0 0 1 1 -2 -2 3 3 0 0 0 0

From eqn (2), we can write
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Upon substitution ofeqn (4) into eqn (I) and rearrangement gives

1605
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where

NUl = k(2-3'1+'1 3)(I-e)

-h 2 J
NU2 = 16 (1-'1-11 +11 )(I-e)

NUJ = i(2+311-11 3)(I-e)

-h 2 3
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-I
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N08 = k(1 +e)( -1- 211+ 3'7 2).
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Symbolically, eqn (5) can be written as

(6)

The next step in evaluating the element stiffness matrix using the finite element method
is to fonnulate the strain-displacement relationship. The strain-displacement relationship
can be written as

a
oe

0 0

0

(") [lOOOW' 01'/
0 0

J- I ]1:" = Bl' = 000 I . 0 N"d"..
Yxy 0110

0
oe

0

0
0

01'/
0

(7)

where J -I is the inverse of the Jacobian matrix given by

(8)

Carrying out the matrix manipulation, eqn (7) can be written as

1:" = B".d" (9)

where
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w 8w
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0
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411 (1 +e)(3-31'/2) 2w (1 +1'/) 8 (1+ e)( - 1+ 21/ + 31/2)
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I 3
- (2 - 31] + I] )4w

o

in which

h = height of the panel zone
W = width of the panel web.

o -h '3- (I -I] -1]- + I] )
8w

o (10)

Having developed the strain-displacement relationship, the stiffness matrix of the web
of the panel zone can be written as

k.,= rB~DBwdv=twil II B~DBwIJld~dl]Jv -I -I

where

t. = thickness of the column web in the panel zone

w

(II)

2
IJI =

in which

{
De if the panel web element is elastic

D = Dep if the panel web element has yielded

v

o ,~,l
Dep = elastic-plastic stress-strain relationship (eqn 32).

Equation (II) can be integrated numerically by using a 2 x 4 Gauss-Legendre Quad­
rature (Fig. 7), i.e.

(12)

where Wi. Wi are weight coefficients (Table I).
k•. expressed in eqn (12) is the stiffness matrix of the web element of the panel zone

with reference to a local coordinate system. The incremental form of this stiffness matrix
is the same as k... since the entries of k... are independent of the displacement, i.e.

SAS ~2/12-0

k•. = k ... (13)
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Fig. 7. Gauss points of the panel web element.

Flange element
The local (e, rJ) coordinate system and the degrees of freedom of the two flange elements

for the panel zone are shown in Figs 6(a) and (c), respectively.
For simplicity, the stiffness matrices used for these flange elements are those of the

ordinary frame element, Le.

for the left flange:

12 0 -6h -12 0 -6h

h2A -h 2Af__f
0 0 0

I I

Elf 4h 2 6h 0 2h 2

klj=hf 12 0 6h (14)

sym.
h2Af 0

I

4h2

and for the right flange:

12 0 6h -12 0 6h

h2Af 0 0
-h 2Af 0

I I

Elf 4h 2 -6h 0 2h2

krf = hf 12 0 -6h (15)

sym.
h2Af 0

I
4h2
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Table 1. Weight coefficients

Gauss point Wi

1609

1 OO0סס.1

2 ooסס1.0

3 1.00000
4 ooסס1.0

5 ooסס1.0

6 ooסס1.0

7 ooסס1.0

8 ooסס1.0

where

h = height of panel zone
1 J

If = --bfli
12

Ar= brlf

in which

bf = width of column flange
If = thickness of column flange.

0.34785
0.65215
0.65215
0.34785
0.34785
0.65215
0.65215
0.34785

The corresponding incremental forms of k If and k,f are

and

(16)

(17)

respectively.
With the incremental stiffness matrices for the three elements of the panel zone

(Figs 6(a)-(c» developed, the incremental stiffness matrix Ii:. Ip of the panel zone (Fig. 8)

d
'l -f-!-td'3

dl2

Fig. 8. Degrees of freedom of a joint panel in local coordinate.
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with respect to a local coordinate system can be obtained by assemblage

• . T'
kiP = assembhngTo'lk'ITo'l

T~wk •.Tow
T •

Tor)\rlTori;

where

T ol( = offset transformation matrix of the left flange element

= [~if ;J
in which

(18)

(19)

o

o
~12 .

I

(20)

To•. = offset transformation matrix of the web element

in which

",. =r~
0

y]I

0

",. ~ [~
0

~tflI

0

(21 )

(22)

(23)

in which

Tori = offset transformation matrix of the right flange element

=[~rl . ]
H r(

(24)

o

o

~t112 .

I

(25)

In the above equations, If is the thickness of the column flange.
These offset transformation matrices are needed due to the fact that the degrees of

freedom of the web and flange elements (Figs 6(a)-(c)) do not coincide with that of the



Frame analysis with panel zone deformation 1611

panel element (Fig. 8). In writing these matrices, it is tacitly assumed that the through­
thickness and shear strains of the flanges of the column are negligible. These assumptions
are conformable with experimental observations.

The incremental stiffness matrix expressed in cqn (I X) was developed with respect to
a local coordinate system which translates and rotates with the element. To incorporate the
panel element in a general frame analysis, this stiffness matrix must be expressed with
respect to a fixed or global coordinate system. The incremental stiffness matrix of the panel
element expressed with respect to a fixed (X, Y) coordinate system is given by

(26)

where

(27)

in which

where (see Fig. 9)

sin 0'1/
cos 0I.!I

o ~] (28)

(29)

Panel ::one plasticity
When the state of stress of the panel web reaches a limit defined by the Von Mises (or

J 2) theory

(30)

where, for plane stress case

J - l( 2 2 3 2)2 - 3 U xx - UxxUyy +Uyy + f x}'

U .. = yield stress of the material a uniaxial tension test (Fig. 5)

the column web of the panel zone is assumed to be yielded.
If strain-hardening of the material is considered (Fig. 5), then in addition to describing

the initial yield surface (eqn (30)), we need to define a subsequent yield (or loading)
surface. If isotropic hardening is assumed in which the loading surface is described by a
uniform expansion of the initial yield surface, then eqn (30) can be generalized to

(31)

where k is the hardening parameter.
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Oncc cqn (30) or eqn (31) is satisfied, the elastic-plastic stress-strain matrix D'P will
be used in place of the elastic stress-strain matrix D' in evaluating k.. in eqn (11) or (12).

The elastic-plastic stress-strain matrix is given (3) by

(32)

where, for J2 theory and associate flow rule, for plane stress case,

D' = elastic stress-strain matrix

of S d' .ou = = eVlatonc stress vector

2uxx - Uyy
2

in which

= 2uyy - uxx
3

(33)

(34)

(35)

ifep ~ 11ey

irep > Iley
(36)

H' is the slope of the hardening parameter k vs the effective strain cp plot (Fig. 10). Note
that Dep is a function of the state of stress and the effective strain.

In the numerical analysis, once eqn (30) or (31) is satisfied, this elastic-plastic stress­
strain matrix is used in place of the elastic stress-strain matrix in evaluating the panel
incremental stiffness matrix. It should be noted that in many instances, the yield condition
will be violated. A finite load increment may bring the state of stress of the element outside
the yield surface (point Q in Fig. 11). If this is the case, the load increment is scaled down
by a factor r defined as

(37)

where

·2 ·2 .. 3 '2a = U xx +un'-u""uyy + 1:xy

b = 2u""a"" + 2uyyayy - U""ayy - uyyaxx + 61:xy i xy

C = u;x + u;". - uxxu,vy + 31:;,v - 3k 2
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x

ail = increment of stress induced by the load increment (Fig. 11) assuming elastic
behavior

(Jij = state of stress before the load increment (point P in Fig. 11)
k =hardening parameter (Fig. 10).

This scaling procedure is repeated until eqn (30) or (31) is satisfied, i.e. until the
state of stress of the element is at point R in Fig. 11.

In order to check the yield criterion of eqn (30) or (31), the current state of stress of
the element must be known. Since the strains and hence the stresses vary from point to
point in the element, sample points must be chosen in such a way as to represent the state
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of the element in the best possible way in the numerical analysis. In the present study, the
eight Gauss points (Fig. 7) and the centroid of the element are used as the sample points.
Detailed calculations of stresses at these points are discussed in [8].

MODIFICATION OF INCREMENTAL BEAM--eOLUMN STIFFNESS MATRIX
FOR THE PRESENCE OF PANEL ZONE

If a panel element is present at the end of a frame element, the 3 degrees of freedom
at the end of the frame element must be related to the 6 degrees of freedom on the face of
the panel element (Fig. 12). In order to relate the degrees offreedom of these two elements,
the concept of equivalent nodal force used in the context of a finite element analysis is
utilized. The forces (axial, shear, moment) at the end of the frame element are regarded as
the applied forces and the energy equivalent forces developed at the nodes of the panel
element are evaluated using the energy balanced concept. The resulting matrix relating the
two sets of forces is the equilibrium matrix. Transposition of this matrix will give the
kinematic matrix which relates the degrees of freedom of the two elements.

Depending on the face of the panel element (Fig. 13) to which the frame element is
attached and the manner the frame forces are assumed to be distributed (Fig. 14) on the
panel face, several different cases can be identified. It should be mentioned that faces I and
3 should be treated differently than faces 2 and 4. This is because a frame element attaches
to face I or 3 of the panel element through a connection. Whereas, for face 2 or 4, the
junction of the frame and panel elements are physicaIly continuous. In this context, a
connection element[8] was inserted between the frame and panel elements for faces 1 and
3 and a stiffener element[8] with high bending rigidity was inserted between the frame and
panel elements for faces 2 and 4. The assumed force distribution shown in Fig. 14 is for
faces I and 3 only. Category A is appropriate for such types of connections in which
continuity between the two elements exists along the depth or at the two flanges of the
frame element (Fig. 15(a». Examples for this category of connections are top and seat
angles, header plate, end plate and T-stub connections. Category B is appropriate for such

+ +

FORCES FROM
FRAME ELEMENT

ASSUMED FORCE DISTRIBUTION
ON PANEL ELEMENT FACE

Ca) CATEGORY A

- + t + C-

FORCES FROM
FRAME ELEMENT

ASSUMED FORCE DISTRIBUTION
ON PANEL ELEMENT FACE

Cb) CATEGORY B

Fig. 14. Assumed force distributions on faces 1 and 3 of the panel element.

SAS :22/12-P
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connections in which continuity exists more or less at the neutral axis of the frame element
(Fig. 15(b)). Examples for this category of connections are single web angle and double
web angle connections. The kinematic matrices relating the degrees of freedom of the two
elements (frame and panel) for different faces of the panel element and different categories
of connections were developed in detail in [8] and are summarized in Appendix I.

Once the kinematic matrices are known, the 6 x 6 frame element can be modified to a
9 x 9 frame element with a panel attached to one of its ends as follows.

If a panel is present at the Ath end of the frame element

k = [Tl.1m 0
°J.rTfp oJIT k1. ° I' (38)

If a panel is present at the Bth end of the frame element

where, in eqns (38) and (39)

(39)

kfm =9 x 9 modified frame element tangent stiffness matrix
kf = 6 x 6 frame element tangent stiffness matrix (see Appendix II)

Tfp =3 x 6 kinematic matrix relating the 3 degrees of freedom at the end of the frame
element to the 6 degrees of freedom on the face of the panel element

I =3 x 3 identity matrix.

-t- ~

-=-

I
V

(a) CATEGORY A

I

V

- -
I
V

(b) CATEGORY B

X REGION ~ ATTACHMENT ~ A FRAME ELEMENT TO A PANEL

Fig. 15. Category A and category B connections.
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Note that the modified incremental stiffness matrix of the frame element is 9 x 9 which
means 3 additional degrees of freedom are introduced into the frame element (see Fig. 16).

If a plastic hinge or connection exists at the end of the frame element, modifications
to k.r are first performed[8] and then used in place of the original kf .

NUMERICAL STUDIES

The panel clement developed here is used in conjunction with the frame and connection
clements developed in a separate report[8] to investigate the behavior of frames. A load­
controlled incremental Newton-Raphson iterative solution technique is employed in the
numerical analysis. Detailed discussion of the solution algorithm is given elsewhere[8]. In
this section, the validity of the panel zone model is first verified by comparison of the
numerical results with experiments. A simple two-bar frame is then analyzed using different
behavioral models regarding the deformational behavior of the connection and panel zone
to demonstrate the effect of joint flexibility on the behavior of the frame.

8

9f1\..... 7
B

-ft,
A

,t~'
!l 5

I~~t' ·tj;~
2

2 8

f1
6

9

A B 3 A B
7

3

"t~fttJ; tt, 4

8

-f.' 8 t 9

77
B

A

\.[hI
2

Fig. 16. Sign convention for the modified frame element.
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COMPARISON WITH EXPERIMENTS

Shown in the inset of Fig. 17 is a subassemblage used by Fielding and Huang[4] to
investigate the behavior of the joint panel. The joint details of the subassemblage are given
in [4]. The column was first loaded with a compressive force of 0.5 Py where Py is the yield
load of the column. The beam load was then applied at the free end of the beam until
failure. During the entire beam loading phase, the column load was maintained at 0.5 Py­
As a result, the panel zone is under a combined loading of axial force from the column load
and shear and moment from the beam load. The experimental load-deflection behavior of
this subassemblage is shown in Fig. 17. Yielding of the web of the panel zone occurs at a
load of 86 kips (383 kN) after which a definite decrease in stiffness of the joint panel was
observed. At 150 kips (667 kN), cracks were observed at the ends of the top horizontal
stiffeners and the specimen was unloaded. Also shown in this figure as a dashed line, is the
numerically obtained load-deflection curve. It can be seen that good correlation exists
between the results obtained numerically and experimentally both in the elastic and post­
yield regimes. In the numerical solution, the actual measured[4] material properties were
used. The apparent larger stiffness and higher yield load obtained numerically as compared
to the test is attributed to the assumption of full fixity at both ends of the column in the
numerical model, whereas in reality, noticeable column end rotations were observed[4].

The insets of Figs 18 and 19 show two subassemblages (Specimens A and B) of an
experimental investigation of the behavior of panel zone by Bertero et 0/.[2]. Specimen A
is typical of an upper story and Specimen B is typical of a lower story. For Specimen A,
an axial force of 0.36 P" where P, is the yield load of the column. was applied to the column

P =0.5 Py

~

v

P+ V

160.---....,.---.----,-----,

- - - - PRESENT

--- EXPERIMENT

(FIELDING
&. HUANG)

2.01.0

/). (inches)

0.5

.-
r - WEB YIELDS
~ (S6 k EXPERIMENT
I 96k NUME RICAL)

I

P
I

P.
I

o

120

,.....
~

"" so....,

>

40

Fig. 17. Comparison of numerical and experimental connection subassemblage load-iieflection
behavior[4l (I kip = 4.45 kN, 1 in. = 25.4 mm).
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P

G=6kips

P = 339 kips

SPECIMEN A

1.00 ,..----..,------r-------,,...----,
He = I 5.39 kip.

lie = 1.4 2 5 inc h••

0.75 EXPERIMENT CBERTERO,

POPOV, KRAWINKLER)
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and vertical beam forces of approx. 6 kips (27 kN) were applied at every third point on the
beams. For Specimen B, an axial force of 0.48 Py was applied to the column and vertical
beam forces of approx. 6 kips (27 kN) were applied at every third point on the beams.
These subassemblages were then subjected to a horizontal force H applied cyclically at the
free end of the column. Since the present analysis deals only with monotonic loadings, only
the initial brunch of the hysteresis load-deflection behavior of these subasscmblages will be
investigated. The experimental curves are shown as solid lines in Figs 18 and 19 for Specimen
A and B, respectively. For Specimen A (Fig. 18), extensive yielding of the web of the joint
panel was observed in the test. The numerically obtained load--deflection curve using the
actual measured[2] material properties is shown as a dashed line in the figure. Good
agreement between the two curves is observed. The numerically predicted yielding of the
web occurs at H = 6.4 kips (28 kN) which agrees favorably with the experiment. Since no
stiffeners are used in the panel zone, the structure becomes numerically unstable as soon as
the panel yields (that is, as soon as a panel hinge is formed). Consequently, the numerically
generated load--deflection curve shows a plateau at H = 6.4 kips (28 kN).

The numerical and experimentalload--deflection curves for Specimen B (Fig. 19) also
agree well with each other. Failure of this specimen was due to the formation of plastic
hinges in the beams. In the numerical solution, convergence of solution became impossible
when a local collapse mechanism developed in the left beam at H = 21.2 kips (94.3 kN).
However, in the experiment, additional load can be applied because even after the formation
of a local collapse mechanism in the left beam, the subassemblage is still statically deter­
minate and so total collapse will not occur until a third hinge forms in the right beam.
Consequently, the experimentalload--deflection curve rises above H = 6.4 kips (28 kN).

Although the post-yield behavior of the specimen shown in Fig. 19 cannot be predicted
by the model due to local failure of the beam, the model does give a good representation
of the elastic behavior of the subassemblage.

In the practical design, it is customary to investigate the drift (that is, lateral dis­
placement) of a frame under service loading conditions to ensure that the frame will not
deflect excessively so as to cause discomfort to the occupants of overstress in the connecting
elements. In the following section, a simple two-bar frame will be analyzed using a number
of different behavioral models to demonstrate the importance of panel zone deformation
on the drift of a structure.

Analysis ofa two-bar frame
Shown in Fig. 20 is a series of structural models for a two-bar frame. Modell (Ml)

is the conventional structural model commonly used by engineers and designers. The
connection joining the beam and column is assumed to be rigid and center-to-center
distances are used for the lengths of the beam and column. Model 2 (M2) is a more refined
model. Although center-to-center distances are still used for the lengths of the beam and
column, the connection is modeled by a spring having a rotational stiffness as described by
the nonlinear moment-rotation behavior of the connection. Model 3 (M3) assumes that
the connection is rigid but the finite size and deformable capability of the panel zone are
taken into account. In this model, clear spans are used for the lengths of the beam and
column. Model 4 (M4) is the most refined model of all. The connection is modeled as
flexible with rotational stiffness described by the nonlinear moment-rotational behavior of
the connection and the joint panel is' modeled as deformable with clear spans used for the
lengths of the beam and column.

For Models 2 and 4, the moment-rotation characteristics of four commonly used
connections (double web angles, top and seat angles, end plate and T-stub) compatible with
the beam and column sections (W14 x 34) used are shown in Fig. 21. They are labeled as
Cl, C2, C3 and C4, respectively. Cl represents a very flexible and C4 represents a very stiff
connection.

The two-bar frame is loaded by a horizontal force H as shown in Fig. 20, the load­
deflection behavior of the frame using different models and connections are shown in Figs
22-25. Failure of the structure is due to the formation of a plastic hinge at the junction of
the beam and column. For Connections Cl and C2, the plastic hinge developed in the
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Fig. 20. Structural modeling of a two-bar frame (1 in. = 25.4 mm).

connection when the ultimate capacity of the connection was exhausted. However, for
Connections C3 and C4, the plastic hinge developed in the column at the beam and column
juncture because the ultimate moment capacities of these two connections exceed the
plastic moment capacities of the sections. This explains why the ultimate loads of the
subassemblages using Connections CI and C2 are less than that of the subassemblages
using Connections C3 and C4. For CI and C2, the ultimate load is dictated by the strength
of the connections, whereas for C3 and C4, the ultimate load is controlled by the strength
of the sections.

If we examine Figs 22-25 carefully, we can conclude that Model 2 will give a sat­
isfactory approximation to Model 4 provided that the connections are relatively flexible
when compared to the adjoining beam and column (e.g. CI'and C2). This is because the
contribution to additional drift from the flexible connection far outweighs the contribution
from panel zone deformation. However, for relatively stiff connections (e.g. C3 and C4),
Model 2 and Model 3 will give comparable results which means the contribution to
additional drift from panel zone distortion will be as important as that from connection
flexibility. As a rough estimate, if (RkiLjEl) ~ 5, where Rki is the initial stiffness of the
connection and L, E and I are respectively the length, elastic modulus and moment of
inertia of the member to which the connection is attached, then Model 2 is justified to be
used in place of Model 4.

To examine the effect of panel zone deformation on the drift of the frame, the load­
deflection behavior of the two-bar frame assuming rigid connection using Model I and
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Model 3 is shown in Fig. 26. It can be seen that at working load, 13% drift of the frame is
due to panel zone deformation. This indicates that panel zone deformation should be
considered in the design of moment-resisting frames.

SUMMARY

The behavior of the panel zone is described and a model to represent the panel
deformational behavior (extensional, shear, bending) is presented. The validity of the model
is shown by comparison with experiments and the importance of the panel zone deformation
on the drift of a structure under service load is demonstrated by the analysis of a two-bar
frame.

CONCLUSIONS

Experiments on connection subassemblages conducted in the past decade have shown
that the panel zone plays an important role in affecting the serviceability and ultimate
behavior of moment-resisting frames. Because of the deformational and inelastic behavior
of the panel zone, the drift and strength of the frame will be affected. The effects of panel
zone deformation and inelasticity are usually undesirable since they will cause an increase
in frame drift and a decrease in frame strength. In this paper, a simple model to represent
the behavior ofthe panel zone was described. The implementation of this model in structural
analysis was presented. The inclusion of panel zone deformation in frame analysis increases
the number of degrees of freedom of the analytical model, yet better prediction of frame
behavior can be achieved.

For moment-resisting frames in which connections of high rigidities are used, panel
zone deformation is an important factor to be considered in the analysis and design of the
frames.
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APPENDIX I-KINEMATIC MATRICES

(I) Face l-eategory A

[ I~ 0 hl12 1/2 0
-'/

12
]

TI , = ttlh 1/2 Itl2 -ttlh 1/2 ttl2

-l/h 0 0 I/h 0 0

(2) Face l-eategory B

[ II' 0 h/8 1/2 0
-hl

8
]

TI, = 3ttl2h 1/2 3ttl4 -3tJ2h 1/2 3ttl4

-3/2h 0 -1/4 3/2h 0 -1/4
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(3) Face 2

['12 0 0 1/2 0

':2]Tfp = ~ 1/2 0 0 1/2
0 1/2 0 0

(4) Face 3-Category A

[112 0 -h/12 1/2 0 'I" ]T;p = 1;(11 1/2 -ltl2 -Itlil 1/2 -1}2
Ilh 0 0 -l/h 0 0

(5) Face 3-Category B

[ IP
0 -h/8 1/2 0

hi' ]Tip = 31t12h 1/2 - 31t14 - 31t12h 1/2 -31J4

3/2h 0 -1/4 -3/2h 0 -1/4

(6) Face 4

[1/2 0 0 112 0 0]
Tfp = ~ 1/2 0 0 1/2 o .

0 1/2 0 0 1/2

APPENDIX II-FRAME ELEMENT TANGENT STIFFNESS MATRIX

The frame element tangent stiffness matrix is expressed[8] as:

kf = T~k,T,.+MAT,+M8Tl+Ffl

where

M A = bending moment al the Ath of the beam-column
M. = bending moment at the Bth of the beam-column

P = axial force

[ -.IL, elLI I slLf -elLf

~T = -slLf elLI 0 slLf -eiLI'. -e -s 0 e s

-2se c'-s' 0 2sc -(e'-s') 0
2es 0 -(2-.r) -2se 0

I
0 0 0 0

T, = T 2 = L 2 sym -2se el-.r 0
'f 2se 0

0

.r -se 0 -se se 0
2 0 se -2 0

I
0 0 0 0

T 3 =- sym .r -se 0
Lf 2 0

0

Lf = chord length of the deformed member
s =sin 0
e =cos 0
o = inclination of the chord of the deformed member

2ALJ<d,0A +d20.)IIj
2ALJ<dl 0 A +d,0.)II

All

.1', = 4 + 2n 2pI15 - [(0.0 lOp +0.543)/(4+ p) + (O.OO4p +0.285)/(8.183 + p)]pl
Sl = 2-nl p(30+ [(O.OIOp +0.543)(4 + p)- (O.OO4p +0.285)(8.183 + p)]pl
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1I2pS2 - (S, +.f2)2(S2 -2)
d - -------------

I - 81I 2p(s, +S2)
d _ -1I2PS2-(SI+S2)2(S2- 2)

2 - 81I 2p(s, +S2)
I'L 2

p == 1I 2EI
El. == rotation of the Ath cnd of the mcmber with rcspcct to its chord
ElH == rotation of the Bth end of the mcmber with rcspect to its chord.
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